xPC Target™ 3
Device Drivers

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
xPC Target™ Device Drivers Guide
© COPYRIGHT 2007-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2007 Online only New for Version 3.2 (Release 2007a)
September 2007 Online only Updated for Version 3.3 (Release 2007b)
March 2008 Online only Updated for Version 3.4 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Customizing xPC Target™ Drivers

Introduction i .. 1-2
XPC Target™ Driversc.eiiiiiiiineeeennnn. 1-2
When to Write Your Own Drivers 1-3
Restrictions on Customizing xPC Target™ Drivers 1-3
Expected Background 1-3
Resources for Customizing xPC Target™ Drivers 14
What Makes Up an xPC Target™ Driver? 1-6

Before YouStart 1-8
Introduction 1-8
Driver Types ...ttt e e e e e 1-9
Bus Types and Register Access 1-9
Register Accessoiiiiiit it e i 1-10
Inlining xPC Target™ Driversc.ccouiuuu.. 1-10

Creating a Custom Driver 1-11

DebuggingNotes, 1-16

PCI Drivers

2

PCI Bus Considerations 2-2
Introduction i 2-2
PCI Configuration Space APT 2-3
Memory-Mapped Accessesoviiiietrinnnnnnnn 2-6
T/O Port Accesses .. vvvvniiii ittt e i 2-6

Sample PCI Device Driver 2-8

iii

iv

ISA and PC/104 Drivers

3

ISA and PC/104 Bus Considerations 3-2
Introduction 3-2
TVOMapped ...ttt i i 3-2
Memory Mappedcoiiiiiiiiiiiiii i 3-3

Masking Drivers

4|

Creating Driver Subsystem Masks 4-2
Driver Mask Guidelines 4-3
Cross-Block Checking 4-5
When YouAreDone 4-6
Sample DriverMask 4-7

Interrupt Support

5

xPC Target™ Interrupts 5-2
Introduction i i 5-2
Interrupt Processing in the xPC Target™ Environment .. 5-2

Adding Interrupt Support 5-7
Introduction 5-7
Guidelines for Creating Interrupt Functions 5-9
Filling in the Driver board Structure 5-10

Hook Function Prototypes — Alphabetical List 5-15

Contents

Custom xPC Target™ Driver Notes

6

S-Function Guidelines

mdlStart and mdlTerminate Considerations

DMA Considerations

Passing Parameters

Accessing Registers
I/OSpace
Memory-Mapped Space

6-2

6-4

6-5

6-7
6-7

Creating Custom Drivers Using the xPC
Target™ Driver Authoring Tool

7

xPC Target™ Driver Authoring Tool

Generating Custom Driver Templates
Using the xPC Target™ Driver Authoring Tool

Setting Up Driver Variables
Saving the Configuration
Reloading the Configuration
Creating the C File Template

Creating a C MEX File for the Driver
Customizing the Device Driver Mask

7-2

7-4
7-4
7-4
7-7

7-8
7-8

vi

I/0 Structures — By Category

8|

I/0 Structures — Alphabetical List

2

I/0 Functions — By Category

10|

PortI/O 10-2
PCI Configuration Information 10-2
Physical Memorycciuiiiiiinnieennnn.. 10-2
Timeo e e 10-2
Miscellaneous 10-3

I/0 Functions — Alphabetical List

Contents

Customizing xPC Target™

Drivers

Introduction (p. 1-2)

Before You Start (p. 1-8)
Creating a Custom Driver (p. 1-11)

Debugging Notes (p. 1-16)

Introduction to writing custom xPC
Target™ drivers

Considerations before you start

Generic procedure for creating
device drivers

Debugging notes while developing
device drivers

1 Customizing xPC Target™ Drivers

1-2

Introduction

In this section...

“xPC Target™ Drivers” on page 1-2

“When to Write Your Own Drivers” on page 1-3

“Restrictions on Customizing xPC Target™ Drivers” on page 1-3
“Expected Background” on page 1-3

“Resources for Customizing xPC Target™ Drivers” on page 1-4

“What Makes Up an xPC Target™ Driver?” on page 1-6

xPC Target™ Drivers

The xPC Target™ software provides device drivers for a variety of third-party
boards. xPC Target users access these drivers as Simulink® blocks from the
xPC Target library (xpclib). If you have a board for which the xPC Target
software does not supply a driver, you can write your own. This guide provides
guidelines for writing custom xPC Target device drivers.

The xPC Target driver library contains drivers that support third-party
boards with many I/O capabilities and applications. This includes drivers for
different types of I/O boards, including

Analog-to-digital
Digital-to-analog
Audio

Counters

Shared memory

There are also drivers that support particular protocols, including

RS-232, RS-422, RS-485
GPIB

CAN

UDP

ARINC 429

MIL-1553

Introduction

When to Write Your Own Drivers
Consider writing your own device drivers for the xPC Target block library if:

® No xPC Target driver exists for your I/O needs.
® You are unable to use a board that the xPC Target software supports.
® You need to extend the functionality of an existing xPC Target driver.

¢ The MathWorks xPC Target team will not write a device driver for your
board.

Restrictions on Customizing xPC Target™ Drivers

The xPC Target software has its own kernel, and you will be writing device
drivers aimed at that kernel. An xPC Target driver is therefore different
from a driver for another environment, such as Microsoft Windows. The xPC
Target kernel is optimized and small, and does not have the operating system
layers that traditional kernels do.

ThexPC Target software installs its own kernel on the target PC. This kernel
runs to the exclusion of any other operating system. When writing your
own driver:

® You cannot use a driver DLL that accompanies the I/O board from
the manufacturer. A manufacturer-supplied DLL will have external
dependencies that the xPC Target kernel cannot resolve. The xPC Target
executable will not be able to load the DLL.

® Do not create your own driver DLL.

¢ If you do not have access to the register programming information, neither
you nor The MathWorks can write a device driver for the board. If you have
access to the source code of an existing driver for the board, you might be
able to port it to the xPC Target kernel.

Expected Background

This guide assumes that you are already knowledgeable about writing device
drivers. It describes the steps specific to writing device drivers for the xPC
Target environment. To write your own device drivers for the xPC Target
system, you need the following background:

1-3

1 Customizing xPC Target™ Drivers

14

Good C programming skills

Knowledge of how Simulink simulation works, for example, the type and
order of calls

Knowledge of writing S-functions and compiling those functions as C-MEX
functions. This includes a comprehensive knowledge of Simulink callback
methods and the Simulink SimStruct functions.

Basic knowledge of Real-Time Workshop

Understanding of I/O hardware. Because of the real-time nature of the
xPC Target software, you must develop drivers with minimal latency.
Most drivers access the I/O hardware at the lowest possible level (register
programming). Therefore, you must understand how to control the board
with register information.

Knowledge of port and memory I/O access over various buses. You need this
information to access I/O hardware at the register level.

Knowledge of PC hardware fundamentals and internals

Resources for Customizing xPC Target™ Drivers
This section lists the resources that are available to you from The MathWorks.

References
The following MathWorks documentation provides information that you can
refer to when customizing xPC Target drivers:

See...

Using Simulink

MATLAB® External
Interfaces

For...

Overall description of the Simulink environment and how the
Simulink software performs simulations.

How to write MATLAB MEX-files.

Introduction

See... For...

Writing S-Functions How to write MATLAB C-MEX S-functions (noninlined S-functions).
Note the following references in this guide:

¢ “S-Function Callback Methods — Alphabetical List” the Simulink
software invokes these methods when simulating a model with
S-functions. Real-Time Workshop uses the same methods in
generated real-time applications.

® “SimStruct Functions — Alphabetical List” Contains detailed
descriptions of the functions that access the fields of an S-function’s
simulation data structure (SimStruct). S-function callback
methods use these functions to store and retrieve information
about an S-function.

Real-Time Workshop® How to write target language compiler (TLC) files to inline S-function
Target Language drivers. This is an optional reference and depends on whether or not
Compiler you choose to inline your driver.

Real-Time Workshop Overall description of Real-Time Workshop fundamentals, and
User’s Guide guidelines on understanding I/O boards and low-level programming

for drivers for those boards.

MathWorks Consulting

You can alternatively contact the MathWorks Consulting Services Group
about the fee-based creation of a driver for your board.

Source Code

You can examine the source code for existing xPC Target device drivers as a
reference for your custom drivers. Refer to the following directory:

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks

Note In this directory, you might notice that some drivers use outdated xPC
Target driver functions. For the current functions to use, see “xPC Target™
Exported Functions” on page 1-6.

1 Customizing xPC Target™ Drivers

xPC Target™ Exported Functions

The xPC Target software provides kernel functions that you can use when
writing your device drivers. These functions enable you to input and output
data, configure PCI devices, and specify time-out intervals. Use only the
functions documented in this guide. The guidelines in this document are not
applicable if you are using an The xPC Target software version prior to xPC
Target software version 3.2 (R2007a). See Chapter 11, “I/O Functions —
Alphabetical List”, for a description of these functions.

Third-Party Directory

The xPC Target software provides the following directory to help you integrate
your custom driver.

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

This directory provides template files that you copy and customize for your
drivers. Place all files that support your drivers in this directory.

What Makes Up an xPC Target™ Driver?

An xPC Target device driver is an S-function with functions that access an
1/0 board.

Like any device driver, an xPC Target driver interfaces between the user and
an I/0O device. Unlike typical device drivers, xPC Target device drivers:
¢ Can have the following parts

= Driver code, that is C code written as an S-function using exported xPC
Target kernel functions (see “xPC Target™ Exported Functions” on page
1-6)

= Optional Simulink block interface (Simulink mask) that users use to
configure the device and access output

= Optional M-file code that you can write to perform operations such as
cross-block checking or parameter value range checking. You reference
this file through the Simulink mask.

¢ Can be included in a Simulink library

® Are configured like any other Simulink block

Introduction

Underlying driver code (C-file)

/ll."ﬁ‘
Ve * dikpeoilS00.c - ®xPC Target, non-inlined S-function driver for the
/’ + Digital Input section of the EPCI-1500 =eries boards:
untitled * - O] x| * KPCI-1802HC
q 5 : . . * KPCI-1501HC
File Edit VYiew Simulabion Format, < .
Tools Help L7 * Copyright 1996-2006 The MathWorks, Inc.
w
,
,
KPCI-1B01HC ’ #define S FUNCTION LEVEL 2
Keithley 1 gundef S _FUNCTION HAME
Digital Input #define 3 _FUNCTION NAME dikpeilsoo // The nawe of the Z-function
/¢ must match the "S-function name'
KPCl1801HC S /¢ found in the "Look Under Mask™
\\ /¢ menu entry
S
F|1o00% N ginclude <stddef.h>
<
N #include <stdlib.h>
\ #include "simstruc.h™
N
S
N #ifndef MATLAB_MEX FILE
- — Ck majk N #include <windows.h>
1 source Block Parsmeters: KPCI-14 b AN .
Siacl| 901 ookl o] . #include "wpctarget.h”
KPCLABIHE N\ #endif
Dighalingut
Parameters
Charwsl vder
]
Sl time:
0.001
P st |1 antosmonchl T . .
fi Mask initialization (M-file)
ot | geed | ue | function [reset, initValue] = mdiokpcil800 (phase, channel, ref, direct,

bhoardType, reset, initValug)

MaSk edltor % MDICKPCZI1S00 - InitFon and Mask Initialization for KPCI-1500 series digital

EdHask Cotor: KPCI-LOSIHCRESIE =gl % The final two parameters (reset and initValue) are used only for digital ow
[T paramaters | aisision | Docunentation |

Teon optum D) commanhs

Prama atop (* KPCI- 1801RC g ¥ Copyright 13596-2004 The MathWorks, Ine.

Vit - % $Revision: 1.4.8.2 § $Date: 2004707715 17:55:41 3

Teamgarercy

Soae I if phase == 1

futaton

Freed | maskType = get_param(goh, 'HaskType' 7

ke slot = get_param(gch, 'slot!)

Aiocn =] | ocks = find system root, ollowLinks', 'on', ookUnderMasks', 'a
SURRERS a1 B hlock find ; (bd 'FollowLinks' ! ! 'LookUnderHMasks' 'all'
Puanplat o o) if lengthiblocks] = 1

Comesaed [pore_tabel {label speeitic... ¥| error ('Model contains two blocks of this type at the sawe PCI slot'):
Sytar port_label(outpat, 1, ey N end

end

[| et | e |

Anatomy of an xPC Target™ Driver

1-7

1 Customizing xPC Target™ Drivers

Before You Start

In this section...

“Introduction” on page 1-8

“Driver Types” on page 1-9

“Bus Types and Register Access” on page 1-9
“Register Access” on page 1-10

“Inlining xPC Target™ Drivers” on page 1-10

Introduction

This topic assumes that you satisfy the requirements outlined earlier in
“Expected Background” on page 1-3 and that you have reviewed the following
sections to prepare:

e “References” on page 1-4

® “Source Code” on page 1-5

o “xPC Target™ Exported Functions” on page 1-6

“Third-Party Directory” on page 1-6

It also assumes that you already have a board for which you want to write
a driver. Before you start, use the following checklist to specify the driver
you want to write:

® Determine the functions of your board that you want to access with your
driver.
® Determine the bus type for the board.
= PCI
= ISA
® Select the I/O access mapping type.
= 1/O port mapped

= Memory address mapped

Before You Start

Select polling versus interrupt.

Specify the blocks for the drivers. Identify
= Input and output ports
= Mask parameters

= Work variables to be shared between driver start, output, and terminate
routines

Determine your timing considerations.

Decide whether you use Inlined functions.

If yes, see the Target Language Compiler documentation of the Real-Time
Workshop.

Driver Types

Standard I/0
e Communication
e DMA

¢ Interrupt-driven

Bus Types and Register Access

The xPC Target™ software supports the two standard PC bus types, ISA and
PCI. The ISA bus is a 16-bit bus with an 8 MHz clock. Another form of ISA
bus is the PC/104. The PCI bus is a 32-bit or 64-bit bus with a 33 MHz or 66
MHz clock. Another form of PCI bus is the PC/104+ (PC/104-Plus).

A driver performs I/O accesses through either I/O ports or memory addresses
(memory mapped).

The xPC Target software accesses I/O port addresses for ISA and PCI buses
as follows:

1-9

1 Customizing xPC Target™ Drivers

1-10

Bus Access

ISA Board switches or jumpers usually select I/O port address and any
memory-mapped region.

PCI The BIOS determines the I/O port address during PCI PNP (Plug
and Play) configurations.

The memory space for I/O boards is different for ISA and PCI boards.

Bus Memory Space

ISA The xPC Target software only permits use of the memory address
between 0xA0000 and OxFFFFF

PCI Upper memory address space, typically greater than 2 GB

Register Access

A device board supports either I/O port or memory-mapped access to onboard
registers. See the board manufacturer’s register programming documentation.

Inlining xPC Target™ Drivers

You can choose to inline or not inline xPC Target drivers. Note the distinction
between Simulink®and Real-Time Workshop® conditional compilation.
Writing a device driver as an inlined S-function ensures that the driver can
coexist with xPC Target device drivers.

Inlining drivers allows you to customize code generated from Real-Time
Workshop. If you choose to create inlined drivers, you must use the Real-Time
Workshop Target Language Compiler.

Note For convenience, you can create a noninlined version of the driver
first, and create an inlined driver for the Target Language Compiler from
the first driver.

Creating a Custom Driver

Creating a Custom Driver

The following is a generic procedure for how to create a custom device driver.
For additional notes on writing custom xPC Target™ drivers, see Chapter 6,
“Custom xPC Target™ Driver Notes”. For a description of a tool that helps
you create simple custom drivers, see Chapter 7, “Creating Custom Drivers
Using the xPC Target™ Driver Authoring Tool”. A simple custom device
driver is one which performs no DMA or interrupt handling.

Note You might need administrative privileges to add a custom device driver
to the xPC Targetsystem.

1 Write your driver in C, using the approved I/O functions as appropriate
(see ‘Chapter 9, “I/O Structures — Alphabetical List” and Chapter 11, “I/O
Functions — Alphabetical List”). An example device driver for the digital
inputs of the Keithley KPCI-1800 series boards is available at

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\dikpci1800.c

2 As you write your device driver, you will want to compile and link the driver,
then test it. Compile and link the driver into a MEX-file. For example:

mex driver.cC

This step creates the MEX-file executable, driver.mexw32.

Note A MEX-file is used for simulation on the host and to set data
structure sizes during code generation. It is not used during target
execution.

3 Create an M-file to supplement the main C driver and support the block
mask. For an example of this file, see

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\mdiokpci1800.m

4 Open the Simulink® Library Browser and create a new library, for example,
your_company_namelib.mdl (see “Creating Block Libraries” in the

1-11

1 Customizing xPC Target™ Drivers

1-12

“Working with Block Libraries” in the chapter of Using Simulink). Use a
unique library name to prevent conflicts with other libraries.

5 In the new library, create an S-function block. From the Simulink Library
Browser, drag an S-Function block to the new library.

6 Configure the S-Function block.

In the new library, right-click the S-Function block and select
S-Function Parameters.

In S-function name, enter the name, without extension, of the driver.
For example, dikpci1800. (This is the driver C-file you created in step 1).

In S-function parameters, enter the parameters you defined for the
driver. The parameter names you enter here must match the names you
will later enter for the driver block mask (through the Parameters
and Initialization panes of the Mask Editor dialog box). For example,
channel,sampletime,slot,control,boardType. Step 7 describes the
block mask creation.

Leave the S-function modules parameter with the default value,
unless you need to separate your driver C-file into multiple files. If that
is the case, see “Specifying Additional Source Files for an S-Function” in
the “Writing S-Functions for Real-Time Workshop® Code Generation”
chapter of the Real-Time Workshop User’s Guide.

Creating a Custom Driver

E Function Block Parameters: S-Functionl x|

—5-Function

User-definable block. Blocks can be written in C, M [level-1], Fortran, and Ada and
must conform to S-function standards, The variables |, «. u, and flag are
automatically pazzed to the S-function by Simulink, vou can specify additional
parameters in the 'S-function parameters' field. If the S-function block requires
additional zource filez for the Real-Time Workshop build process, specify the
fileniames in the 'S-function modules’ field, Enter the filenames only; do not use
extenzions o full pathnames, e.q., enter ‘sre zcl’, not 'sre.c srcl .ol

—Parameters

S-function name: Idikpcﬂ ann Edit |

S-function parameters; Ichanne|,sampIetime,slnt,contml,bnaldTypd

S-function modules: I

ok I Cancel | Help | Apply |

7 Double-click the S-Function block and create a block mask (see Chapter 4,
“Masking Drivers”).

8 Save and close the S-Function block.

9 At the bottom of the S-Function block, enter a block name. For example,
KPCI-1801HC.

system

KPCI-1801HE|

10 Save and close the library.

11 To make your new library visible in the Simulink Library Browser, move
it to

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

12 Copy and paste sample xpcblocks.m in

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

1-13

1 Customizing xPC Target™ Drivers

1-14

13

Rename this file your _company namelib_xpcblocks.m and edit this file as
follows:

® Set out.Library to your new library.
out.Library = 'your company namelib';

® Set out.Name to a string, such as the library name.
out.Name = 'your_company_namelib Blockset';

This string will appear in the Simulink Library Browser.

¢ Ensure that out.IsFlat is set to 0.

out.IsFlat = 0;

Note Ensure that you create a function that calls the out structure.

(Optional for PCI boards) To enable the getxpcpci function to account for
your new board, copy sample_ supported.m to a unique file name. For
example:

your_company_namelib_supported.m

Edit your copy of the file. For each board for which you add a device driver:
a Copy one of the commented structures in the file.
b Remove the comment symbols (%).

¢ Starting with 1, change the ID number as necessary. Number the device
structures sequentially, starting with 1.

d Replace the field entries with your equivalents.

A structure entry might look like:

boards (1) .VendorID = '18f7"';
boards (1) .DevicelD = '0004"';
boards(1).SubVendorID = '-1';
boards (1) .SubDeviceID = '-1';
boards(1).DeviceName = '422/2-PCI-335"';

Creating a Custom Driver

boards(1).VendorName = 'Commtech';
boards (1) .DeviceType ‘Serial Ports';

e Save and close the file.

f To confirm your entries, type getxpcpci('all') in the MATLAB®
Command Window.

14 Ensure that all your driver files, including include files, are in the directory:

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

Ensure that these files have unique names to prevent conflicts.

15 To update the directories that you added, at the MATLAB Command
Window, type

rehash toolbox

When you are done, your library will appear in the Simulink Library Browser
with xPC Target: added to the beginning of the library name.

xPC Target: your_company namelib Blockset

1-15

1 Customizing xPC Target™ Drivers

1-16

Debugging Notes

While developing your custom driver, you can use printf statements in your
code. This displays output on the left-hand side of the target PC monitor. If
your printf statements scroll off the monitor, consider disabling the target
PC scope area to provide more display area for these statements:

1 At the MATLAB® Command Window, type xpcexplr to start xPC Target™
Explorer.

2 In xPC Target Explorer, navigate to target PC node >
Configuration > Appearance.

3 Clear the Enable target scope check box.
4 Recreate the target boot disk and reboot the target PC.
The scope area on the target PC monitor no longer appears.

5 Continue with the device driver development.

PCI Drivers

PCI Bus Considerations (p. 2-2) Considerations when writing xPC
Target™ drivers for PCI devices

Sample PCI Device Driver (p. 2-8) Pointer to sample xPC Target device
driver

2 PCI Drivers

PCl Bus Considerations

In this section...

“Introduction” on page 2-2

“PCI Configuration Space API” on page 2-3
“Memory-Mapped Accesses” on page 2-6
“I/O Port Accesses” on page 2-6

Introduction

When writing xPC Target™ drivers for PCI devices, consider the memory
access method. A PCI device can be either I/O port mapped or memory
mapped.

¢ [/O port mapped — The BIOS assigns a port range.
¢ Memory mapped — The BIOS assigns a memory region, if your device

is memory mapped.

The PC BIOS automatically assigns a conflict-free set of resources to any PCI
device found in the system at boot-up. You typically do not know where the
board resides (base address) before driver initialization. However, you can
obtain this information by querying the PCI configuration space at run time.
The xPC Target software provides functions to accomplish this (see the “PCI
Configuration Information” on page 10-2 functions).

To locate a PCI device, you need the following:

¢ Vendor and device ID

¢ Optionally, subsystem vendor and subsystem device ID

Note You need the subsystem vendor and subsystem device ID if the
vendor and device ID do not uniquely identify the board.

¢ Slot number or bus and slot number

PCI Bus Considerations

You can have the drivers locate PCI devices in one of the following ways:

If the system has one board of any one type, you can use the driver slot
option to search for the first board that matches a vendor and device ID. To
initiate this search, set this option to -1.

If the system contains multiple boards of the same type, setting the slot
option to -1 does not find the additional boards. In that case, specify the
bus and slot numbers with the vendor and device IDs.

PCI Configuration Space API

Before you can access a PCI device, you need to access the configuration
space to locate the board in the target PC memory. This section describes the
procedure to do this.

For PCI devices, the driver will need to access the PCI configuration space
for the board. This space contains relevant board information such as the
base address and access type (I/0 port or memory mapped). The xPC Target
software provides functions that allow the driver to access this space.

Vendor and device ID — The driver searches all boards for the specified
vendor (manufacturer) and device ID. The PCI Steering Committee, an
independent standards body, assigns a unique vendor ID (uint16) to each
PCI board vendor. Each vendor then assigns a unique ID to each PCI board
type it supports.

Note Vendor and device IDs do not always uniquely identify a board. For
example, all boards that use the PLX-9080 bus interface chip have a vendor
ID of 10B5 (the vendor ID assigned to PLX Technology, Inc.). The device
ID for the chip is 9080. In cases like this, to select a particular board that
contains this chip, you must use a subvendor and subdevice ID in addition
to the vendor and device IDs.

Slot number or bus and slot number — The driver looks only for the board
that matches the specified vendor and device ID and slot number.

2 PCI Drivers

PCI Device Information

Use the xpcGetPCIDeviceInfo function to get information for a PCI device in
your system. The syntax for this function is:

int xpcGetPCIDevicelInfo (uint16_T vendorId, uinti16_T deviceld,
uint16_T subVendorId, uint16_T subDevicelId, uint16_T bus,
uint16_T slot, xpcPCIDevice *pcilInfo);

This function returns the xpcPCIDevice structure filled according to the

following:

If You Supply...
All the parameters

XPC_NO_SUB for
the subVendorId
or subDeviceld
parameter

XPC_NO_BUS_SLOT
for the slot for the
device

This Function....

Looks for a device that matches all the parameters
and returns the xpcPCIDevice structure for that
device. Use this form if you know that your system has
multiple boards from the same vendor with the same
ID and you want your user to specify the exact device.

Does not consider the subvendor or subdevice ID when
looking for a match for the specified device. It returns
the xpcPCIDevice structure for a device that matches
the other parameters. You can use this form if you

do not plan to use the subVendorId or subDeviceld
values.

Returns the first PCI device it finds that matches
the remaining parameters. You can use this form if
you know that your system has only one board with
a particular ID set.

Passing Slot Information from the Block Mask to Its Driver

xPC Target drivers use the following convention to fill in slot parameters and
retrieve slot information. Choose the convention that will work best for you.

PCI Bus Considerations

se'..O To...
Set slot

1
'
—_

Assume bus = 0 and call the xpcGetPCIDeviceInfo
function to find the first instance of the board.

Set slot

1l
0

Assume bus = 0 and call the xpcGetPCIDeviceInfo
function to find the specified board. If the board
matches the IDs, return the PCI information to the
driver. Otherwise, return an error.

Set slot = [B, S] Check bus B and slot S for the specified board. If the
board matches the IDs, return the PCI information to
the driver. Otherwise, return an error.

Setting slot = [0, S]isidentical to slot = S.

The following example illustrates how to use the xpcGetPCIDeviceInfo
function to program the driver to accept slot number input or slot and bus
number input from the driver block.

1 Call this function from the md1Start callback function.

2 Pass the slot number or slot and bus number into the xpcGetPCIDeviceInfo
function using code like the following:

uint16_T vendorId, deviceld;
int32_T bus, slot, subvendor, subdevice;

XxpcPCIDevice pciInfo;

/* S_PCI_SLOT_ARG is passed in from the mask */

/* Typically the slot arg is a scalar containing -1 if there is only one board of
this type in the target */

/* If there are multiple boards of this type the slot arg is a vector containing bus
and slot info */

/* This code snipped parses the slot arg into bus and slot */

if ((int_T) (mxGetN(ssGetSFcnParam(S, S_PCI_SLOT_ARG))) ==